
SANDIA REPORT
SAND2009-5515
Unlimited Release
Printed September 2009

Investigating Methods of Supporting
Dynamically Linked Executables on High
Performance Computing Platforms

James H. Laros III

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia is a multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States Department of Energy’s
National Nuclear Security Administration under Contract DE-AC04-94-AL85000.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy

by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United

States Government. Neither the United States Government, nor any agency thereof, nor any

of their employees, nor any of their contractors, subcontractors, or their employees, make any

warranty, express or implied, or assume any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-

resent that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,

does not necessarily constitute or imply its endorsement, recommendation, or favoring by the

United States Government, any agency thereof, or any of their contractors or subcontractors.

The views and opinions expressed herein do not necessarily state or reflect those of the United

States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best

available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401

Facsimile: (865) 576-5728

E-Mail: reports@adonis.osti.gov

Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce

National Technical Information Service

5285 Port Royal Rd

Springfield, VA 22161

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.fedworld.gov

Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
EP

ARTMENT OF ENERG
Y

•
 •
U
N

IT
ED

STATES OF AM

ER
I C

A

2

SAND2009-5515
Unlimited Release

Printed September 2009

Investigating Methods of Supporting Dynamically
Linked Executables on High Performance

Computing Platforms

James H. Laros III
1422 Scalable Computer Architectures

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1319
jhlaros@sandia.gov

Suzanne M. Kelly
1423 Scalable Systems Software

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1319
smkelly@sandia.gov

Michael J. Levenhagen
1423 Scalable Systems Software

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1319
mjleven@sandia.gov

Kevin Pedretti
1423 Scalable Systems Software

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-1319
ktpedre@sandia.gov

Abstract

Shared libraries have become ubiquitous and are used to achieve great resource efficiencies
on many platforms. The same properties that enable efficiencies on time-shared computers and
convenience on small clusters prove to be great obstacles to scalability on large clusters and
High Performance Computing platforms. In addition, Light Weight operating systems such as
Catamount[9] have historically not supported the use of shared libraries specifically because
they hinder scalability. In this report we will outline the methods of supporting shared libraries
on High Performance Computing platforms using Light Weight kernels that weinvestigated.
The considerations necessary to evaluate utility in this area are many and sometimes conflict-
ing. While our initial path forward has been determined based on this evaluation we consider
this effort ongoing and remain prepared to re-evaluate any technology that might provide a
scalable solution.

3

Acknowledgment

The authors of this report would like to recognize the significant contributions of the author of both
Statifier and Ermine, Valery Reznic. Reznic spent significant amounts of time not only responding
to questions concerning his tools but on general issues surrounding dynamically linked executables
and subtleties of Glibc and ELF. His assistance was invaluable.

4

Contents

Summary .. 6
Nomenclature .. 7
1 Introduction .. 9
2 Levenhagen Method .. 11
3 File-system Method .. 14
4 Statifier Method. .. 16
5 Ermine Method .. 18
6 Future Light Weight Kernels .. 19
7 Conclusion .. 20
References .. 22

5

Summary

This report is an evaluation of a range of possible methods ofsupporting dynamically linked ex-
ecutables on capability class1 High Performance Computing platforms. Efforts are ongoing and
extensive testing at scale is necessary to evaluate performance. While performance is a critical
driving factor, supporting whatever method is used in a production environment is an equally im-
portant and challenging task.

1Systems designed to support applications that use a significant fraction of the total resource in support of a single
cooperating application.

6

Nomenclature

Archive - See Static Library

Dynamically Linked Executable - Executables that contain references to external functions or
variables that are contained in shared libraries. The shared objects referenced by the dy-
namically linked executable are mapped (linked into) into the executables memory space at
run-time.

Dynamically Loaded Shared Object - Objects contained in shared libraries that are condition-
ally loaded, at runtime, into a dynamically linked executables memory space using the
dlopen() API.

Library - A file built for the purpose of sharing code between applications. Libraries may be
static or shared.

Loader - See Runtime Linker

Runtime Linker - An interpreter that accomplishes loading of the dynamically linked executable
and resolves external references to objects contained in shared libraries and maps them into
the executables memory space. Also Loader.

Shared Library - Libraries that contain objects that are linked into dynamically linked executa-
bles at runtime. These objects are referenced by dynamically linked executables at build
(link) time.

Static Library - Libraries that contain objects that are linked into statically linked executables at
initial build or link time. Also called Archives.

Statically Linked Executable - A standalone or self-sufficient executable. An executablethat
resolves externally referenced functions and or variablesfrom static libraries and includes
them into the final executable at build time (link time).

7

8

1 Introduction

In this report we discuss the results of evaluating the efficacy of a number of different methods
of supporting dynamically linked executables on High Performance Computing (HPC) platforms,
specifically those using a Light Weight Kernel (LWK) operating system. Catamount[9], and pre-
decessors, have historically only supported launching statically linked executables. This choice
was made largely for performance reasons. A statically linked executable can be launched on
12,960 nodes (38,400 cores) in 30 seconds. Efficiencies suchas these are critical to the success of
capability runtime systems.

While many of the terms we use in describing the methods evaluated are commonplace, they
have unfortunately been sufficiently obfuscated and require clarification on how they will be used
in this document. The termlibrary is used to describe a method of sharing code (in the form of
objects) between disparate applications. The term librarydoes not indicate how the objects are
used. (Libraries can also be used to segregate portions of a single application but this usage is
peripheral to our discussion.) Libraries can be built to be used asstatic (also called archives) or
shared. Objects in static libraries are included into the final executable at link time, producing
a stand-alone or self-sufficient final executable (static or statically linked executable). Only the
objects needed by the final executable (also called application in this document) are linked in
(included). The objects in shared libraries are referenced(not included) by an application at link
time (dynamically linked). This reference, or note, indicates the application has a dependency on
an object located in a specific shared library. It is important to note this reference will be resolved
at run-time (the shared library containing the referenced object will be located and verified to be
the correct version) by theruntime linker or loader and mapped into the application’s memory
space, but the shared object will not be loaded (into the application’s memory space) until needed.
In contrast to statically linked executables, dynamicallylinked executables are not self-sufficient
since they depend on the presence of shared libraries. How this dependency is accommodated will
be one of the topics of our discussion.

There is an additional method of using objects contained in shared libraries we discuss in this
report. A dynamically loaded shared object is an object contained in a shared library that is
externally referenced by a dynamically linked executable but is not resolved immediately at run-
time. These shared objects may or may not be used by the application depending on application
logic. Shared libraries requested in this way are accessed using what we will refer to as thedlopen()
API . This method of accessing shared objects complicates an already challenging issue since each
node or core participating in an application may arbitrarily (from the perspective of the runtime
system) request an object from a shared library.

In the following sections we will discuss the methods evaluated, focusing primarily on their
applicability to Catamount and future LWK’s.

• Levenhagen Method (Section 2)

• Filesystem Method (Section 3)

• Statifier Method (Section 4)

9

• Ermine Method (Section 5)

The following evaluation criteria were used where applicable.

• Scalability

• Portability

• Standards based

• Production issues and Maintainability

How these criteria apply to each method will be discussed, where appropriate, and explained
within the context of that method. Standalone conclusions will be included in each section describ-
ing a specific method. In Section 6 we will describe how a number of the challenges specific to
Catamount have been mitigated by decisions made with our current LWK initiative. While many
obstacles have been removed many scalability challenges remain. Comparative conclusions will
be discussed in Section 7.

Definitions for specific terms are included in the Nomenclature section found in this report.

10

2 Levenhagen Method

Prior to this evaluation effort Michael Levenhagen developed a prototype, based on Catamount
(specifically Catamount Virtual Node (CVN)), which was intended to demonstrate a method of
supporting dynamically linked executables on an HPC platform (Red Storm[5]). The resulting
prototype, coined the Levenhagen method in this report, modified the Catamount yod2/pct34 load
protocol in the following ways. The default behaviour of theload protocol upon executing yod
is to memory map the executable (statically linked executable in the default case) and fan-out the
executable to all participating nodes. (This protocol has proven to be very efficient and scalable.)
To support dynamically linked executables it is necessary to have or duplicate the functionality of
a runtime linker (loader). While a port of Glibc[3] is part of the standard Catamount tool-chain, the
Catamount specific Glibc is dated and is only built to support statically linked executables. This
presents a problem since the Glibc loader is only built when Glibc is built to support dynamically
linked executables.

This effort included an evaluation of the level of effort involved in building the Catamount
specific Glibc to support dynamically linked executables. This evaluation was accomplished by
simply attempting this task. While significant progress was made in this direction, it was deter-
mined the level of effort required to produce a production ready version would, at a minimum, be
twice the original porting effort, which was approximatelythree man months.

Since building the Catamount Glibc loader was determined to be impractical, at this time,
and a loader, or the functionality of a loader, is necessary,other options had to be considered.
An acceptable alternative, from the embedded world, was found in uClibc[8]. This open source
Glibc compatible library provides a very large percentage of Glibc features in an extremely small
number of lines of code. Producing a loader, sufficient for prototyping and testing based on uClibc
compatible with Catamount, proved to be a relatively simple task.

Using the uClibc loader the default load protocol was modifiedto perform the following tasks:
When yod is executed it analyzes the executable to determine if it is statically or dynamically
linked. If statically linked, it reverts to the default protocol. If the executable is dynamically
linked the load protocol maps both the uClibc loader and the dynamically linked application into
memory on the launch node. Both the loader and the applicationare distributed by fanout to each
participating node. In the default case, only the application is distributed to participating nodes.

At this point, both the loader and the executable (application) are memory resident on each
node participating in the application. Each node begins execution but instead of simply starting the
application, the loader executes the application with the goal of determining which shared libraries
are necessary. (Recall, externally referenced functions are resolved at link time, the shared libraries

2Yod is the command line parallel application launcher, partof the Catamount runtime system (similar to the
mpirun utility)

3Pct (Process Control Thread) is the managment thread that runs under the Catamount QK Kernel which manages
compute resources for applications running on Catamount nodes

4Yod/pct protocol refers to the communication protocol usedbetween yod and pct to, in this case, distribute appli-
cation binaries to nodes participating in a job

11

that fulfill these requests are referenced in the ELF5 executable (application). The loader interprets
these references and requests resolution of each shared library.) Each node independently and
sequentially requests each required shared library. An assumption is made that each executable
will require the same shared libraries in the same sequence.This is a valid assumption for load time
shared libraries (as opposed to shared libraries requestedusing the dlopen()[3] API). Each shared
library is efficiently fanned out using the standard yod/pctprotocol. Once all necessary shared
libraries are distributed to all participating nodes, the loader does its work of symbol resolution
and relocation on each node. When this is complete the application enters main(), on each node,
and execution continues as normal.

In evaluating this method, we found this approach provides the scalability necessary for both
existing and near term platforms at a minimum. However, issues not unique to this method that
could potentially impact scalability remain. When an executable (application) requires a shared li-
brary, efficiencies are obtained on time-shared multi-usersystems by sharing shared libraries. That
is, in normal circumstances many applications executing ina single memory space will often use
the same shared libraries. Efficiency is gained by only one copy of each shared library occupying
memory space. In addition, only when an application requires an object from the shared library
is that object loaded into memory (more specifically portions of a shared library are mapped in
units called segments and only loaded when the page of memorymapped to that location is ac-
cessed). This allows for dynamically linked executables toremain small relative to a statically
linked executables and resource efficiencies resulting from sharing common libraries.

Unfortunately, the execution environment is quite different on capability class HPC platforms
(traditionally a space shared environment). Typically, a single application executes on each node.
This precludes any efficiencies gained by resource sharing between applications. In addition, nodes
typically have no locally accessible storage. If demand paging were to be used, accesses would be
remote and likely very expensive. While the dynamically linked executable is likely to be smaller
than the equivalent statically linked executable, the absence of demand paging capability requires
each externally referenced shared library be loaded, in itsentirety, into each nodes memory space.
The result is the total memory burden for dynamically linkedapplications will far exceed the equiv-
alent statically linked application. The Levenhagen method efficiently mitigates the challenge of
distributing shared libraries to participating nodes. An important achievement. It does not, how-
ever, address some of the other inherent implications of supporting shared libraries on capability
class platforms (i.e. memory inefficiencies).

The use of uClibc was a sane choice for the initial prototypingand testing effort but presents
portability and standards concerns. If this method of supporting dynamically linked executables,
specifically for Catamount, is chosen for production use, it should be recognized that uClibc does
not assume to support all Glibc functionality. It should also be assumed that with further testing
additional challenges related to Glibc support might be encountered. As with the Catamount spe-
cific Glibc port, any uClibc port would be very Catamount specific, therefore not widely portable.
Additionally, choosing to use uClibc to provide the loader only addresses one of the requirements
of complete support for dynamically linked executables. Catamount system libraries currently sup-
port only statically linked executables. One of the drivingfactors to support dynamically linked

5ELF (Executable and Linkable Format) common standard format for object code.

12

executables is the user community’s desire to not have to re-link and or re-compile when changes
are made to the Catamount system libraries. Providing sharedlibrary versions of these system
libraries could be challenging. The level of effort to buildshared Catamount system libraries was
not estimated as part of this task.

The Levenhagen method, as designed, can provide limited support for the dlopen() API. If
the dynamically linked application uses the dlopen() API ina consistent manner, that is each ap-
plication follows the same logic path and requires the same shared library in the same sequence,
the protocol described previously will satisfy dynamically loaded shared library requests. A more
challenging aspect of supporting the dlopen() API is the very real possibility that not all partici-
pating nodes in the application will ask for the same shared library in the same sequence at the
same time or at all. The Levenhagen method does not address this possibility. Supporting un-
predictable dlopen() requests would be a challenge and require significant additional research and
development.

Finally, while certainly not specific to this method in particular, supporting any custom solution
in a production environment increases effort and requires significant maintenance commitments.
Efficiencies could be gained by leveraging standards but dueto intentionally imposed limitations
of the Catamount runtime system, support of standard tool-chain components is impractical at this
time.

13

3 File-system Method

This method of accessing shared libraries by dynamically linked executables, at its basis, is the
standard method currently used on most platforms. For example, many cluster systems support
dynamically linked executables by providing access to shared libraries on local disks (local to each
node), remotely mounted filesystems (like NFS), and even by pre-populating memory filesystems
with shared libraries. Unfortunately, each approach has inherent limitations. It is well established
for capability class systems that the negative implications of local disk far outweigh any benefit
and therefore render this option impractical. Likewise, providing access to remotely mounted
filesystems for the purpose of accessing shared libraries isinefficient. As mentioned in Section 2,
at runtime each reference to a shared library is resolved andmemory mapped into each individual
application’s memory space. To support this first stage a filesystem would have to support tens
of thousands of simultaneousgetattr()6 requests for a single file. Even if this could be done in a
scalable manner when the application needs to actually use the object from the shared library the
same tens of thousands of nodes would all come to a halt waiting for the shared library segment to
be loaded into each of the tens of thousands of individual memory spaces from a single file location.
Without mitigating these issues in some way this approach clearly will not scale to the node counts
we anticipate. Taking the approach of simply loading all shared libraries an applicationmight need
into a memory based filesystem, at for instance boot time, would simply waste critical memory
resources. Since each application runs on its own dedicatednode the same inefficiencies described
in Section 2 apply. Additionally, even if any of these approaches were practical, the challenges
of providing a loader, a version of Glibc and Catamount sharedsystem libraries would require the
same effort as discussed in Section 2. If we ignore Catamount specific issues and focus on efficient
delivery and access to shared libraries from each node, there are numerous methods that might be
investigated.

Catamount uses a filesystem layer called libsysio[9],[7]. One approach would be to enable
libsysio to support loading shared libraries to each node using the same yod/pct protocol described
in Section 2. Libsysio could be modified to recognize file IO requests made for a specific path
and to use the yod/pct protocol to efficiently distribute theshared library in its entirety to each
participating node. This approach shares in all of the pros and cons previously described in Section
2 related to the yod/pct protocol.

The libsysio layer could be modified to use other methods thatmight provide efficient shared
library distribution. Blue Gene/L[1], for example, uses a proxy based filesystem configuration to
support dynamically linked executables. This method couldbe reproduced using the libsysio layer.
In our estimate, this method could provide equivalent efficiencies to the Blue Gene/L method but
not be as efficient as either the Levenhagen Method (Section 2) or libsysio leveraging a yod/pct
type distribution protocol.

Providing support for dynamically linked executables, if we ignore the added complications of
supporting the dlopen() API, could be achieved by pre-determining which shared libraries an appli-
cation requires and then efficiently distributing those shared libraries to a memory based filesystem

6Function call to retrieve file attribute information.

14

on each node. This method closely resembles the method chosen by Cray Inc.TM to support dynam-
ically linked executables. The mechanisms to pre-determine which shared libraries are required
is available with either standard tools like ldd7 or simple to achieve by examining the executable
(assuming it is an ELF executable). If we chose to pursue thismethod in a Catamount environment
in addition to all of the previously discussed challenges, support for a memory based filesystem
would have to be added along with support for mmap()8 read()9 and open()10 which are currently
not supported for this activity. From the perspective of supporting dunamically linked applica-
tions in the Catamount environment, filesystem approaches such as libsysio provide little if any
advantage compared to the Levenhagen method and share most,if not all, of the challenges.

7Standard linker, part of Glibc
8Function call to map a file resident on storage other than memory into main memory
9Function call to read information from region addressed by file descriptor

10Function call which establishes a file descriptor to a specified file.

15

4 Statifier Method

Statifier[6] is an open source tool that packages a dynamically linked executable into a self-
sufficient pseudo-static (statified) executable. The resulting statified executable contains the loader,
the original dynamically linked executable and all shared libraries required by that executable. The
initial reason this tool was attractive to investigate is the standard loader from Glibc could poten-
tially be used to build the statified executable. In addition, symbol resolution and relocation is
done during the statification process which has the potential to eliminate possible requirements for
mmap(), read(), and open(). The final statified executable isa single binary executable. This could
simplify the required changes to the yod/pct protocol to support dynamically linked executables.
While the Levenhagen method proved to be a very scalable way todistribute the required shared
libraries to participating nodes, it is logical to assume that distributing a single executable (default
Catamount method) would be equally or more efficient. Statifier could also potentially support the
dynamically linked executables that use the dlopen() API byspecifying potentially used shared
libraries with the LDPRELOAD11 environment variable.

To determine the feasibility of using Statifier to support dynamically linked executables we
contrived a test case using a simple hello world type programprovided in the Catamount distri-
bution. The program was modified to reference a simple sharedlibrary of our construction. We
built the final executable by statically linking with the Catamount system and Glibc libraries and
dynamically linking with our simple shared library. We thenstatified the resulting dynamically
linked executable to produce a statified executable. Our first problem was quickly evident. Cata-
mount assumes that executables have only two PTLOAD12 segments. The statified executable in
all cases contain greater than two PTLOAD segments. Supporting more than two PTLOAD seg-
ments would require similar but not quite as extensive modifications to the yod/pct load protocol as
were described in Section 2. Properly placing all segments of the statified executable might prove
more challenging and uncover additional complications.

Our efforts investigating the feasibility of Statifier wereshortened due to very helpful and
candid discussions with the tool’s author. Simply stated, the author felt that Statifier might present
support problems and was not appropriate for use in our production environment. The author
considered Statifier a learning experience and had since used the experience gained in developing
Statifier to start a new project with similar goals. This new project, Ermine[2], was also considered
as a part of this project and will be discussed in Section 5. Since one of the most critical factors in
evaluating each method was the ability to be supported in a production environment, using Statifier
seemed a poor choice given the comments of the author.

Conceptually, Statifier satisfied many of our requirements. The scalability of distributing the
single statified executable would likely be sufficient for our needs. While not previously men-
tioned, the statified object is very large. This should not besurprising since the final object con-
tains the loader, the original dynamically linked executable and all referenced shared libraries. If
the LD PRELOAD option is used to include libraries potentially referenced by dlopen() calls the

11Environment variable used to specify search paths to searchfor referenced libraries
12In ELF, specifies a loadable segment

16

final executable would be even larger. Regardless, distributing a single large executable would
likely be as, or more, efficient as distributing a number of objects, which in total, equal the size of
the single statified object. Statifier uses the standard Glibc loader and shared libraries, therefore
would likely be a highly portable solution. Additionally, while Statifier itself is not a standard it is
open-source and uses standard tools to accomplish its goals.

17

5 Ermine Method

Ermine[2] was developed by the same author as Statifier. Ermine is a completely separate project
sharing no code with Statifier. Ermine, in contrast to Statifier, is intended to be production quality
and supports additional features Statifier does not. For thepurposes of this discussion Ermine
provides basically the same benefit, a single self-sufficient executable constructed from the loader,
a dynamically linked executable and all referenced shared libraries. While the target audience for
both Statifier and Ermine is not the HPC environment, these features are attractive and share all of
the benefits outlined in Section 4. One additional feature ofErmine is worth mentioning; Ermine
has the ability to pack arbitrary data files into the final executable package. This feature could be
useful in the HPC environment to distribute input data files,for example. In Section 4 we discussed
the necessity of modifying the yod/pct protocol to support greater than two PTLOAD segments.
Ermine produces only two PTLOAD segments and might be more easily supported by the existing
yod/pct protocol.

Ermine, however, does require support for mmap(), open() and read() which would require
modification to the Catamount environment. Further analysisof the practicality of Ermine became
academic due to the fact that Ermine is a closed source commercial product. Our criteria of stan-
dards based implies open source availability. While a solution like Ermine might be considered to
support dynamically linked executables on Catamount if the effort were minimal (which it would
not be) requiring a closed source commercial product as partof an open source LWK distribution,
for example Kitten[4], is unacceptable.

18

6 Future Light Weight Kernels

In 2005 work on a next generation LWK began. This new effort, Kitten 13[4] is an open-source
operating system designed specifically for HPC. Kitten borrows heavily from the LinuxTM

code base, but in areas critical to scalability and performance like memory management and task
scheduling, is written from scratch incorporating lessonslearned from a now long history of LWK
development at Sandia.

In Section 2 a number of dependencies specific to Catamount were mentioned that complicated
support of dynamically linked executables. By design, Kitten avoids many of these complications.
Kitten provides partial Linux API and ABI compatibility so that standard compiler tool-chains and
system libraries (e.g., Glibc) can be used without modification. The resulting ELF executables can
be run on either Linux or Kitten unchanged. It can be generally stated that the scalability chal-
lenges of supporting dynamically linked executables with Kitten are the result of features inherent
to shared library support rather than complications resulting from trade-offs made in support of
scalability and performance.

The lessons learned from both the initial prototyping and later analysis of the Levenhagen
method, along with our other analysis, have provided an initial path forward for scalable dynam-
ically linked executable support on Kitten. In short, sincethe design of Kitten mitigates virtually
all of the challenges identified in Section 2, the scalability of the distribution protocol provides
an attractive template to be used in the design of a Kitten launch protocol. It is important to note
that additional unresolved challenges remain in supporting applications that wish to leverage the
dlopen() API. Kitten, like Catamount, is a very flexible framework that allows rapid prototyping. A
decision to support run-time shared library distribution through the launch protocol does not pro-
hibit using a completely separate mechanism to support distribution of shared libraries requested
using the dlopen() API.

13The name Kitten continues the cat naming theme, but indicates a new beginning.

19

7 Conclusion

In Section 2 we outlined a method designed to support dynamically linked executables that pro-
vides a scalable distribution of the shared libraries required by the application. While many chal-
lenges specific to Catamount led us to conclude that the modifications required, production and
maintenance implications were prohibitive, the basic design proved worthy and is targeted for
use in ongoing LWK development (Section 6). Section 4 and 5 provided interesting approaches
that had great potential in solving issues specific to Catamount and for future LWK development.
Unfortunately, both of these specific tools failed to meet one or more of our critical requirements.
While our analysis determined these specific tools could not be used, the basic concept of distribut-
ing a self-sufficient executable package is attractive. Run-time distribution of a single executable
has proved to be a very scalable approach and other than the size, both the Statifier and Ermine
method provide the equivalent of a single executable for distribution. Techniques like this may
warrant additional consideration. The Filesystem Method,described in Section 3, also remains
a topic for future consideration. This method, in most instances, can be pursued independent of
operating system considerations. As a result, one of the attractive aspects of this method is the
inherent portability.

Table 1 provides a summary of the issues considered for each presented solution. The qualita-
tive ratings of poor, fair, good and very good are in relationto each other, rather than as a general
statement of textitgoodness.

Table 1. Matrix of key issues for support of dynamically linked
executables versus potential solution methods in capability class
HPC systems.

Issues/Method Levenhagen In-Memory
Filesystem

Statifier Ermine

Scalability Very Good Good Very Good Very Good
Portability Poor Fair Good Very Good
Standards Based Poor Fair Good Very Good
Maintainability Requires

Local
Support

Requires
Enhanced
libsysio

Declared
Insufficient

Source
Code Not
Available

Supports dlopen() Poor Yes Yes Yes
Larger Memory
Requirements
(Relative to static)

Yes Yes Yes Yes

Custom glibc (Cata-
mount)

Yes Yes Maybe No

Custom mmap()
(Catamount)

Yes Yes No Yes

While our analysis determined that supporting dynamically linked executables, specifically in

20

the Catamount production environment, required an unacceptable level of effort and subsequent
maintenance, the potential convenience to the user community of this feature has made it a priority
for future LWK implementations.

21

References

[1] Blue-Gene/L. Electronic reference, Lawrence LivermoreNational Labs,
https://asc.llnl.gov/computingresources/bluegenel.

[2] Ermine. Electronic reference, Open Source, http://www.magicermine.com.

[3] Gnu c library. Electronic reference, Open Source, http://www.gnu.org/software/libc/.

[4] Kitten. Electronic reference, Open Source, http://software.sandia.gov/trac/kitten.

[5] Redstorm. Electronic reference, Sandia National Laboratories,
http://www.cs.sandia.gov/platforms/RedStorm.html.

[6] Statifier. Electronic reference, Open Source, http://statifier.sourceforge.net.

[7] sysio. Electronic reference, Open Source, http://www.sourceforge.net/libsysio.

[8] uclibc. Electronic reference, Open Source, http://www.uclibc.org.

[9] Suzanne M. Kelly and Ron Brightwell. Software Architecture of the Light Weight Kernel,
Catamount . Inproceedings of the Cray User Group (CUG), 2005.

22

DISTRIBUTION:

1 MS 1319 James H. Laros III, 01422
1 MS 1319 Suzanne M. Kelly, 01423
1 MS 1319 John VanDyke, 01423
1 MS 1319 Kevin Pedretti, 1423
1 MS 1319 Micheal Levenhagen, 1423
1 MS 1319 Ronald Brightwell, 1423
1 MS 1319 James Ang, 1422
1 MS 0899 Technical Library, 9536 (electronic)

23

24

v1.32

